Math 241 Winter 2024
 Lecture 2

Feb 19-8:47 AM

More Review

1) Solve $\frac{1}{2} x+4=\frac{2}{3} x-5$

$$
L C D=6
$$

$$
\begin{gathered}
{ }^{3} 6 \cdot \frac{1}{2} x+6 \cdot 4=6 \cdot \frac{2}{3} x-6 \cdot 5 \\
3 x+24=4 x-30 \\
3 x-4 x=-30-24 \\
-x=-54 \\
x=54
\end{gathered}
$$

$$
\begin{aligned}
& \text { 2) Solve, give final answer in interval notation } \\
& \frac{2}{5} x-\frac{1}{2}>\frac{1}{2} x-\frac{3}{5} \\
& (-\infty, 1) \\
& \begin{array}{l}
2 L C D=10 \\
70 \cdot \frac{2}{3} x-10 \cdot \frac{1}{2}>+5 \cdot \frac{1}{2} x-1+\frac{3}{5}
\end{array} \\
& \text { (CD) }=5 \cdot 2 \\
& 4 x-\underset{\square}{5>} 5 x-6 \quad \square<1 \\
& 4 x-5 x>-6+5 \\
& -x>-1 \\
& \text { Now divide by }-1 \\
& \frac{-x}{-1}<\frac{-1}{-1} \\
& \text { S.B.N. } \\
& \begin{array}{l}
\{x \mid x<1\} \begin{array}{l}
\text { What is LCD for } \\
\text { dent. } 2,4,5, \text { and } 10 \text { ? } \\
2=2 \\
4=2 \cdot 2
\end{array} \\
5=5 \\
\text { Such that } \\
10=2 \cdot 5 \\
\text { LCD }=2 \cdot 2 \cdot 5=20
\end{array}
\end{aligned}
$$

Jan 3-8:09 AM

Solve by factoring:

$$
\begin{aligned}
& 4 x^{2}+9=12 x \\
& 4 x^{2}+9-12 x=0 \\
& \underbrace{4 x^{2}-12 x+9}_{36}=0 \rightarrow \underbrace{4 x^{2}-6 x}_{\substack{-1,36 \\
-2,18}}-6 x+9=0 \\
& \begin{array}{lll}
\text { Sum }=-12 & -3,12 & \text { By Z.P.R. } \\
-4,9 &
\end{array} \\
& \text {-4,9 } \\
& 2 x-3=0 \text { OR } 2 x-3=0 \\
& \text { Sol. Set }\left\{\frac{3}{2}\right\} \\
& x=\frac{3}{2} \\
& \text { Repeated } \\
& \text { Solution }
\end{aligned}
$$

Solve $(2 x+5)(3 x-1)=45$ by quadratic formula.

Foil, Simplify, RHS $=0$

$$
\begin{array}{ll}
6 x^{2}-2 x+15 x-5-45=0 & a x^{2}+b x+c=0 \\
6 x^{2}+13 x-50=0 & x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
a=6 \quad b=13 \quad c=-50 & b^{2}-4 a c=13^{2}-4(6)(-50)=1369 \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-13 \pm \sqrt{1369}}{2(6)}=\frac{-13 \pm 37}{12} \\
x=\frac{-13+37}{12}=\frac{24}{12}=2 \quad \text { Solution Set } \\
x=\frac{-13-37}{12}=\frac{-50}{12}=\frac{-25}{6} \quad\left\{\frac{-25}{6}, 2\right\}
\end{array}
$$

find all three sides of a right triangle such that sides are 3 consecutive even integers.

By Pythagorean Them

$$
x^{2}+(x+2)^{2}=(x+4)^{2}
$$

$$
\begin{aligned}
& x^{2}+x^{2}+4 x+4=x^{2}+8 x+16 \\
& x^{2}+4 x+4-8 x-16=0 \\
& x^{2}-4 x-12=0
\end{aligned}\left\{\begin{array}{l}
x-6=0 \\
x=6
\end{array} \quad x+2=0\right.
$$

find the area of the triangle given below

use Heron's formula Is this a right Triangle? $a^{2}+b^{2}=c^{2}$

$$
10^{2}+12^{2}=18^{2}
$$

$$
100+144 \stackrel{?}{=} 324
$$

Area $=\sqrt{S(S-a)(S-b)(S-c)} \quad 244 \neq 324$
where $S=\frac{a+b+c}{2}$
Not a right Triangle.

$$
\begin{array}{rlrl}
\text { where } S=\frac{a+b+1}{2} & A_{\text {sean }} & =\sqrt{20(20-10)(20-12)(20-18)} \\
S=\frac{10+12+18}{2}=\frac{40}{2}=20 & & =\sqrt{20 \cdot 10 \cdot 8 \cdot 2} \\
\text { Area } \approx 56.57 \mathrm{ft}^{2} & & =\sqrt{2 \cdot 10 \cdot 10 \cdot 16} \\
& \approx 57 \mathrm{ft}^{2} & & =\sqrt{16} \cdot \sqrt{100} \cdot \sqrt{2} \\
& =4 \cdot 10 \cdot \sqrt{2} \\
& =40 \sqrt{2} \mathrm{ft}^{2}
\end{array}
$$

find area $\dot{\dot{1}}$ Perimeter of the shape below

Rectangle
$\sqrt{10}+\sqrt{2}$

$$
\begin{aligned}
A & =L W \\
& =\underbrace{(\sqrt{10}+\sqrt{2})(\sqrt{10}-\sqrt{2})}_{\text {conjugates }} \\
& =(\sqrt{10})^{2}-(\sqrt{2})^{2} \\
& =10-2=8
\end{aligned}
$$

Recall $(A+B)(A-B)=A^{2}-B^{2}$

$$
\begin{aligned}
& P= 2 L+2 W \\
&=2(\sqrt{10}+\sqrt{2})+2(\sqrt{10}-\sqrt{2})=2 \sqrt{10}+2 \sqrt{2}+2 \sqrt{10-2 \sqrt{2}} \\
&=4 \sqrt{10}
\end{aligned}
$$

find area $\dot{\varepsilon}$ Perimeter of the shape below

$$
A=S^{2}
$$

Square

$$
=(\sqrt{8}+\sqrt{2})^{2}
$$

$$
=(\sqrt{8}+\sqrt{2})(\sqrt{8}+\sqrt{2})
$$

$$
=\sqrt{64}+\sqrt{16}+\sqrt{16}+\sqrt{4}
$$

$$
=8+4+4+2
$$

$$
\begin{align*}
P=4 S=4(\sqrt{8}+\sqrt{2}) & =4 \sqrt{8}+4 \sqrt{2} \\
& =4 \cdot \sqrt{4} \sqrt{2}+4 \sqrt{2} \\
& =4 \cdot 2 \sqrt{2}+4 \sqrt{2} \\
& =8 \sqrt{2}+4 \sqrt{2}=12 \sqrt{2}
\end{align*}
$$

find the hypotenuse of the right triangle below
 Pythagorean Them

$$
\sqrt{225}-\sqrt{15}-\sqrt{15}+1+\sqrt{225}+\sqrt{15}+\sqrt{15}+1=x^{2}
$$

$$
15+1+15+1=x^{2} \rightarrow x^{2}=32
$$

$$
x=\sqrt{32}
$$

$$
=\sqrt{16} \sqrt{2}
$$

$$
x=4 \sqrt{2}
$$

If $x^{2}=k$, then $x= \pm \sqrt{k}$
Square-Root Method ex: Solve $x^{2}=400$

$$
x= \pm \sqrt{400}
$$

$$
\Delta\{ \pm 20\}
$$

$$
x= \pm 20
$$

Solve $\quad x^{2}-50=0$

$$
x^{2}=50
$$

By Square - Root method

$$
x= \pm \sqrt{50}= \pm \sqrt{25} \sqrt{2}= \pm 5 \sqrt{2}
$$

Solve

$$
\begin{aligned}
& (2 x-1)^{2}-9=40 \\
& (2 x-1)^{2}=49
\end{aligned}
$$

By Square-Root method

$$
\begin{aligned}
& 2 x-1= \pm \sqrt{49} \\
& 2 x-1= \pm 7 \\
& 2 x=1 \pm 7 \\
& x=\frac{1 \pm 7}{2}
\end{aligned} \quad\left[\begin{array}{cc}
\square x=\frac{1+7}{2} & x=\frac{1-7}{2} \\
=\frac{8}{2} & =\frac{-6}{2} \\
=4 & =-3
\end{array}\right.
$$

Solving $x^{2}+b x+c=0$ by completing the square method.

$$
\begin{aligned}
x^{2}+8 x-6 & =0 \\
x^{2}+8 x+16 & =6+16 \\
(x+4)^{2} & =22
\end{aligned}
$$

take $\frac{1}{2} b$, then square it, and add to both sides.
Now by S.R.M.,

$$
\begin{aligned}
& x+4= \pm \sqrt{22} \\
& x=-4 \pm \sqrt{22}
\end{aligned} \quad\left\{\begin{array}{l}
\text { Sols. Set. } \\
-4 \pm \sqrt{2}
\end{array}\right.
$$

Solve by completing the square method:

$$
\begin{aligned}
& q^{x^{2}-10 x-24}=0 \\
& \text { make Sure }=1 \\
& x^{2}-10 x+25=24+25\left\{\begin{array}{l}
\text { Take } \frac{1}{2} b, \\
\text { Square it, } \\
\text { add to both } \\
\text { sides }
\end{array}\right. \\
& \text { Now S.R.M. } \\
& x-5)^{2}=49 \\
& x=5 \pm 7 \sqrt{49}
\end{aligned} \quad \begin{aligned}
& x=5+7 \quad x=5-7 \\
& =12 \quad=-2
\end{aligned}
$$

Jan 3-10:01 AM
find x: Use Pythagorean Them

$$
\begin{aligned}
& x+1 \\
& x^{2}+1=8
\end{aligned} \begin{aligned}
& (x-1)^{2}+(x+1)^{2}=4^{2} \\
& x^{2}-2 x+1+x^{2}+2 x+1=16 \\
& 2 x^{2}+2=16
\end{aligned}
$$

Can $x=-\sqrt{7}$? No, $-\sqrt{7}-1$ is a negative quantity.

$$
\{\sqrt{7}\}
$$

Side cannot be negative

Special Right Triangle

$$
30^{\circ}-60^{\circ}-90^{\circ}
$$

verify

$$
\begin{gathered}
5^{2}+(5 \sqrt{3})^{2}=10^{2} \\
25+25 \cdot 3=100 \\
25+75=100 \\
100=100
\end{gathered}
$$

find missing sides $\dot{\xi}$. angle.

$$
2 x=6 \sqrt{3}
$$

$$
=3 \sqrt{9}=3 \cdot 3=9
$$

$$
x=3 \sqrt{3}
$$

verify

$$
\begin{gathered}
(3 \sqrt{3})^{2}+9^{2}=(6 \sqrt{3})^{2} \\
9 \cdot 3+81=36 \cdot 3 \\
27+81=108 \\
108=108 \sqrt{ }
\end{gathered}
$$

Find missing sides $\dot{\varepsilon}$, angle:

method I:

$$
\begin{aligned}
& x \sqrt{3}=10 \\
& x=\frac{10}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} \\
& x=\frac{10 \sqrt{3}}{\sqrt{9}} \\
& x=\frac{10 \sqrt{3}}{3}
\end{aligned}
$$

Method II

$$
x^{2}+10^{2}=(2 x)^{2}
$$

$$
x^{2}+100=4 x^{2}
$$

$$
4 x^{2}-x^{2}=100
$$

$$
3 x^{2}=100
$$

$$
x^{2}=\frac{100}{3}
$$

$$
x= \pm \sqrt{\frac{100}{3}}
$$

$$
= \pm \frac{\sqrt{100}}{\sqrt{3}}=\frac{10}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}
$$

$$
x= \pm \frac{10 \sqrt{3}}{3}
$$

$$
x=\frac{10 \sqrt{3}}{3}
$$

Right Triangle

Find missing sides angle

$$
\begin{aligned}
& x \sqrt{2}=12 \\
& x=\frac{12}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{12 \sqrt{2}}{\sqrt{4}}=\frac{12 \sqrt{2}}{2} \\
& x=6 \sqrt{2}
\end{aligned}
$$

verify

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
(6 \sqrt{2})^{2}+(6 \sqrt{2})^{2}=12^{2} \\
36 \cdot 2+36 \cdot 2=144 \\
72+72=144
\end{gathered}
$$

How to rationalize deno. when it has two terms in the form of
multiply top

$$
\begin{array}{ll}
\sqrt{a} \pm b, \sqrt{a} \pm \sqrt{b} & \text { and bottom } \\
\text { ex: } \frac{2}{\sqrt{5}-\sqrt{3}} \cdot \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}} & \text { by the } \\
=\frac{2(\sqrt{5}+\sqrt{3})}{\sqrt{25}+\sqrt{15}-\sqrt{15}-\sqrt{9}}=\frac{2(\sqrt{5}+\sqrt{3})}{\underbrace{\frac{5-3}{2}}}=\sqrt{5}+\sqrt{3}
\end{array}
$$

Rationalize the denom.:

$$
\begin{aligned}
\frac{\sqrt{5}}{\sqrt{5}+1} \cdot \frac{\sqrt{5}-1}{\sqrt{5}-1} & =\frac{\sqrt{5}(\sqrt{5}-1)}{\sqrt{25}-\sqrt{5}+\sqrt{5}-1} \\
& =\frac{\sqrt{25}-\sqrt{5}}{5-1} \\
& =\frac{5-\sqrt{5}}{4}
\end{aligned}
$$

Rationalize the numerator:

$$
\begin{aligned}
& \frac{\sqrt{7}-\sqrt{6}}{\sqrt{6}} \cdot \frac{\sqrt{7}+\sqrt{6}}{\sqrt{7}+\sqrt{6}}=\frac{\sqrt{49}+\sqrt{42}-\sqrt{42}-\sqrt{36}}{\sqrt{42}+\sqrt{36}} \\
& 42 \rightarrow 42 \cdot 1 \text { None } \\
& 21 \cdot 2 \text { are } \\
& 7 \cdot \begin{array}{c}
\text { Perfect } \\
\text { Squares }
\end{array}
\end{aligned}=\frac{7-6}{\sqrt{42}+6}=\frac{1}{\sqrt{42}+6} .
$$

Rationalize the dena.

$$
\begin{aligned}
& \frac{\sqrt{7}-\sqrt{2}}{\sqrt{7}+\sqrt{2}} \cdot \frac{\sqrt{7}-\sqrt{2}}{\sqrt{7}-\sqrt{2}}=\frac{\sqrt{49}-\sqrt{14}-\sqrt{14}+\sqrt{4}}{\sqrt{49}-\sqrt{14}+\sqrt{14}-\sqrt{4}} \\
& -x-x=-2 x \\
& \sqrt{4}+\sqrt{13} \neq \sqrt{9+13} \\
& \sqrt{3}+\sqrt{2} \neq \sqrt{5}
\end{aligned}
$$

Rationalize the den, them simplify

$$
\begin{aligned}
& \frac{\sqrt{6}}{\sqrt{3}+\sqrt{2}} \cdot \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}}=\frac{\sqrt{6}(\sqrt{3}-\sqrt{2})}{\sqrt{9}-\sqrt{6}+\sqrt{6}-\sqrt{4}}=\frac{\sqrt{18}-\sqrt{12}}{3-2} \\
& \quad=\frac{\sqrt{9 \sqrt{2}}-\sqrt{4} \sqrt{3}}{1}=\frac{3 \sqrt{2}-2 \sqrt{3}}{1}=3 \sqrt{2}-2 \sqrt{3}
\end{aligned}
$$

Now rationalize the numerator:

$$
\frac{\sqrt{6}}{\sqrt{3}+\sqrt{2}} \cdot \frac{\sqrt{6}}{\sqrt{6}}=\frac{\sqrt{36}}{\sqrt{18}+\sqrt{12}}=\frac{6}{3 \sqrt{2}+2 \sqrt{3}}
$$

Solve

$$
\begin{aligned}
& 3 x^{2}-4=0 \\
& 3 x^{2}=4 \\
& x^{2}=\frac{4}{3} \\
& \text { Square-Root Method }
\end{aligned}
$$

Soln Set

$$
\left\{ \pm \frac{2 \sqrt{3}}{3}\right\}=\left\{-\frac{2 \sqrt{3}}{3}, \frac{2 \sqrt{3}}{3}\right\}= \pm \frac{2 \sqrt{3}}{3}
$$

Draw a circle centered at $(0,0)$ with radius 1.
In QI, find a point on the circle that divides the curve by half.

Consider a unit circle, find two points on the circle in QI that divides the curve into 3 equal parts)

$$
\begin{aligned}
& 2 a=1 \quad a=\frac{1}{2} \\
& x=a \sqrt{3}=\frac{1}{2} \sqrt{3}=\frac{\sqrt{3}}{2}
\end{aligned}
$$

Jan 3-11:47 AM

Class QZ 1
find the area of a triangle with sides $8 \mathrm{~cm}, 13 \mathrm{~cm}$, and 11 cm . Box Your final Ans.
$S=\frac{8+13+11}{2}=\frac{32}{2}=16$ Round to a whole \#

Area $=\sqrt{16(16-8)(16-13)(16-17)}=\sqrt{16 \cdot 8 \cdot 3 \cdot 5}$

$$
\begin{aligned}
=\sqrt{1920} & \approx 43.818 \\
& \approx 44 \mathrm{~cm}^{2}
\end{aligned}
$$

